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Studies have been made [1-5] on linear stationary topics in mass and heat transfer for 
particles in a flow of incompressible liquid at low Peclet numbers. Similar nonlinear cases 
have been examined for any surface chemical kinetics in [6-9]. In [i0] there is a study of 
the nonlinear joint heat and mass transfer at a spherical particle in a flow of compressible 
gas for the case of a power-law temperature dependence for the viscosity. In [II], mass and 
heat transfer were considered for a droplet and for a solid particle of any shape in trans- 
verse and shear flows of an incompressible liquid when the diffusion coefficient (thermal 
diffusivity) was arbitrarily dependent on concentration (temperature). 

i. Formulation. New Variables. We consider the stationary heat and mass transfer for 
a particle (drop) of any shape in a translational flow of compressible gas, where the defini- 
tive parameters are dependent in any fashion on temperature. It is assumed that the concen- 
tration and temperature at the surface of the particle and far from it (at infinity) take 
constant values. We neglect thermal diffusion and barodiffusion and omit terms of the order 
of the square of the Mach number to write the equations in dimensionless variables as 

Pe T cpp(v.grad T) = div(~ grad T); (i.i) 

P%p(v.grad  u) = div(p~ grad u); ( 1 . 2 )  

r~rs(O,~)~  T = I ;  r - +  oo, T - - ~ 0 ;  

r=rs (O ,~ ) ,  u =  1; r - +  oo, u - + 0 ,  ( 1 . 3 )  

T~ --  T, u~ --  u, ( 1 . 4 )  
T =  r ~ - - T  u = - -  % = % ( T ) =  %*(r*) 

' u ~  - -  % ' %, ( ~ )  

aU~ _ p, aU~cv*(T~)O~ Pec , p --- 
PeT --  ~, (T~) ' D(T~) --  P~ ' 

D (T,)' 
z ,  ( r , )  ~ = ~ ( r )  = .  D ( T ~ )  ~ (0) = ~ (0) = 1. = L(T) = ' ~ , ( r ~ ) '  

Here Ts~ T,, and T~ are the temperatures at the particle surface, in the gas flow, and 
the unperturbed value at infinity; Us, u,, and u~, relative (molar) concentrations at the 
particle surface, in the flow, and at infinity; Cp,, specific isobaric specific heat of the 
gas; p, and p~, gas densities in the flow and at infinity; a, characteristic particle size 
(the radius for a sphere); U~, incident flow speed; X,, thermal conductivity of the gas; D, 
diffusion coefficient; r = (r, 0, ~) , spherical coordinate system immobilely linked to the 
particle (the angle 0 is reckoned from the direction of the incident flow); r = Irl, dimen- 
sionless polar radius referred to the characteristic particle size; PeT and Pec, thermal and 
diffusion Peclet numbers; and r = ~(0, ~), equation for the particle surface, where it is 
assumed that 

Ts=/:=T~ and us:=/=u~, ( E > 0 ,  ~ > 0 ) .  

In writing (1.1)-(1.4) it has been assumed that the concentration of the minor compo- 
nent is small and does not influence the mean mass velocity, density, or temperature (in par- 
ticular, the dependence of the transport coefficients on concentration is neglected). 

We determine v, p, and T from the solution for the flow of a viscous thermally conduct- 
ing gas. In what follows we need in addition only the equation of continuity 

div(pv) = O, ( 1 . 5 )  
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and the condition that the normal component of the gas velocity at the surface of the drop 
or particle is zero (contact condition) 

r = ~ ,  (v.n) = 0 .  (1.6) 

Here and subsequently, the notation is abbreviated by omitting the arguments 8 and ~ in 
~__----rs(0,~ ) while n is the unit vector along the normal to the surface of the particle. 

We also assume that the gas density is a known function of temperature: 

p = p(T) (1.7) 

which is equivalent, for example, to the following: The viscosity is dependent only on tem- 
perature ~ = ~(T,) and the Schmidt number is constant. With a view to generality, the ex- 
plicit form of (1.7) will not at present be specified; some detailed examples are considered 
in Sec. 4. 

For convenience in analysis, by analogy wi=h [ii] we replace the temperature T by a new 
auxiliary function 

T 

49 = 49 (~, T) = j' L (~) d~ 
0 

(49 (~, 0) = 0, r  (~, 0) = 0 .  (1.8) 

Then we can reformulate the boundary-value problem of (1.1)-(1.4) on the basis of the 
identities 

T 

cvp (v- grad T) --~ div (pvh) -- h div (pv), h (T) = S cp (~) d~, 
0 

p(v.grad u) ---- div(pvu) - -  u div (pv) 

together with (1.5) as follows in terms of the function r 

Pe T div(pvh) = A49; r = r~, 49 = J(~); r - +  oo, 49-+  0; ( 1 . 9 )  

PecdiV(pvu) = d iv (o  grad u); r = rs, u = l ;  r - +  oo, u - +  0, ( 1 . 1 0 )  

h = h(49)  ~ h ( T ( 4 9 ) ) ,  r = (o(49) ---- p(T(49))~(T(49)). 

Here  T = T( r  i s  d e t e r m i n e d  by  r e v e r s i n g  t h e  f u n c t i o n  o f  ( 1 . 8 ) ,  and i n  t h e  l i n e a r  c a s e  
I = i we have T = ~, while J(1) is given by 

1 

J (~) = S t (~) d~. ( 1 . 1 1 )  
0 

The purpose of the study is to derive the average Nusselt and Sherwood numbers, which 
are basic characteristics of the heat and mass transfer: 

I 07' dS i f oo dS (i.12) Nu(•, PeT) ~ ,  ~(T) On = -  4-'~ , )  On ' 
8 S 

i ~ 0u 
Sh ((o, Pe) = - -  ~-~ (o (0)  - ~ -  d S ,  

S 

where 3/3n is the derivative along the exterior normal to the surface of the particle S = 
{r = r~(O, ~p)); Sh(o ,  P e ) ~  Sh(~,  Pec, PET). 

2.  S o l u t i o n  Method .  A u x i l i a r y  E q u a t i o n s .  We f u r t h e r  a s sume  t h a t  t h e  P e c l e t  number s  
a r e  s m a l l  and o f  t h e  same o r d e r  o f  ma)gn i tude :  

R e ~ - +  0, Pe T = t / e~Pr~ ,  Pec = Re~Sc~,  ( 2 . 1 )  

Pr~  = O(t), Sc~ = O(i), 
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aU~p, ~Cp, Sc ~t 
He = ~---F--' Pr = %. , p,D" 

Here Re, Pr, and Sc are the Reynolds, Prandtl, and Schmidt numbers; the subscript ~ cor- 
responds to the unperturbed values of these parameters at infinity. 

The solution to (1.1)-(1.4) or to (1.8) and (1.9) is derived by linking asymptotic ex- 
pansions in terms of the small parameter Re~ [i-ii]. The entire flow region is split into 
two subregions: the internal one ~ = {r s < r < 0 (Re-1~)} and the external one a~ = {0. 
(Re-X ~ ! r}. As usual, we introduce the compressed coordinate z = Re=r in the external re- 
gion and the solution in each of the subregions is sought separately in the form of the in- 
ternal expansion 

and the external one 

r  o +  PeT(I) l + o ( R e ~ ) ,  u =  u 0 + P e c u  1 +  o(Re~),  

rs ~ r ~ O (Re2l ) ,  

09i = O i ( r ,  O, H), ui  = ui (r ,  O, H), i ~ O, I 

(2.2) 

= ~(0) + PeTO(~) § o (Re~), u ~ u(0) pe c u(1) + o(Re~), O ( H e Z 1 ) ~ r ,  ( 2 . 3 )  

O (0) = U (0) = 0 ,  O {I) = O(1)(Z,  0 ,  H),  u(1) = U(1)(Z, 0 ,  ~ ) ,  Z = R e a r .  

H e r e  and  s u b s e q u e n t l y  t h e  e x p a n s i o n  i s  d i r e c t l y  i n  t e r m s  o f  PeT and  Pe  c f o r  c o n v e n i e n c e .  

The a s y m p t o t i c  s o l u t i o n  i n  t h e  i n t e r n a l  r e g i o n  ~1 i s  c o n s t r u c t e d  f r o m  t h e  b o u n d a r y  c o n d i -  
t i o n s  a t  t h e  s u r f a c e ,  w h i l e  t h a t  i n  t h e  e x t e r n a l  r e g i o n  ~ i s  d e r i v e d  f r o m  t h e  b o u n d a r y  c o n -  
d i t i o n s  a t  i n f i n i t y ;  t h e  unknown c o n s t a n t s  a r e  d e t e r m i n e d  b y  means  o f  a l i n k a g e  p r o c e d u r e  [ 1 -  
111. 

The new v a r i a b l e  o f  ( 1 . 7 )  means  t h a t  a l l  t e r m s  i n  t h e  i n t e r n a l  a s y m p t o t i c  e x p a n s i o n  ~ i  
and  t h e  e x t e r n a l  one  0 ( i )  f o r  t h e  i n i t i a l l y  n o n l i n e a r  b o u n d a r y - v a l u e  p r o b l e m  f o r  t h e  t e m p e r a -  
t u r e  of (i.I) and (1.3) satisfy linear equations in regions ~i and ~ [ii]. 

We substitute the representations of (2.2) for ~ and u into (1.8) and (1.9), and put 
PeT = Pec = 0 to get that the zero terms in the internal expansion are determined by solving 
the following equations with the boundary conditions at the surface of the particle: 

A ~  o = 0; r : rs, ~o : J(~); r--+ co, ~ o - +  0; ( 2 . 4 )  

d iv(~(O0)grad  u 0 ) =  0; r = rs, u 0 = t ;  r - +  co, u 0 - ~  0. ( 2 . 5 )  

The b o u n d a r y  c o n d i t i o n s  a t  i n f i n i t y  i n  ( 2 . 4 )  and  ( 2 . 5 )  a r e  o b t a i n e d  f r o m  t h e  c o n d i t i o n s  
f o r  l i n k u p  w i t h  t h e  z e r o  t e r m s  i n  t h e  e x t e r n a l  e x p a n s i o n  o f  ( 2 . 3 ) .  

The s o l u t i o n s  t o  ( 2 . 4 )  and  ( 2 . 5 )  c a n  b e  e x p r e s s e d  i n  t e r m s  o f  t h e  s o l u t i o n  t o  a v e r y  
s i m p l e  a u x i l i a r y  l i n e a r  p r o b l e m  f o r  a n  o r d i n a r y  L a p l a c e  e q u a t i o n :  

hc o = O; r : rs, c o = 1; r - +  c~, Co-+O ' ( 2 . 6 )  

w h i c h  i s  f a m i l i a r  f o r  p a r t i c l e s  o f  v a r i o u s  s h a p e s .  I n  p a r t i c u l a r ,  co = r -~  f o r  a s p h e r i c a l  
particle. 

We choose the reference point for the radius vector r suitably to write the expression 
for co of (2.6) in the following form [2], which tends to zero for r § ~, as for a harmonic 
function: 

c o = Sh( t ,  O)r -1 + O(r-a) ,  ( 2 . 7 )  

where Sh(l, 0) is the mean Sherwood number corresponding to the mass transfer to the particle 
in an immobile immiscible liquid with P = i in the case of a constant diffusion coefficient 

= i in (2.6). 

The solution to (2.4) can be put as 

0 o ~ J(~,)c o. ( 2 . 8 )  
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We seek the solution to (2.5) as 

u o = ](0o)]-1(J(%)), ](0) = O, ( 2 . 9 )  

where the function f is determined by substituting this expression into (2.5) and is then 
compared with the equation for the temperature distribution of (2.4). The comparison gives 

~o To ( 
] ( 0 ~  .t" d~ " %(T) dT - - 0 ( - ~ ,  To), O 0 = O ( %  , To) , ( 2 . 1 0 )  

0 0 

where for clarity we have also written the corresponding expression in terms of the zero 
term in the internal temperature expansion To. 

The average Nusselt and Sherwood numbers of (1.12), which are determined by the zero 
terms in the internal expansion of (2.6)-(2.10), take the form 

0), S h ( o ,  0 ) =  J ( l )  J - l ( ~ ) S h ( l ,  0). ( 2 . 1 1 )  Nu(~, O) J ( ~ ) S h ( i ,  

The e q u a l i t y  f ( J ( % ) )  = J ( % / g g )  h a s  b e e n  u s e d  i n  d e r i v i n g  t h i s  f o r m u l a .  

We d e r i v e  t h e  f i r s t  t e r m s  i n  t h e  e x t e r n a l  e x p a n s i o n  o f  ( 2 . 3 )  f r o m  t h e  f o l l o w i n g  l i m i t i n g  
properties of the functions defining (1.9) and (i. I0) for r § ~: 

p-+t, ~-+1, ~-+t, u-+t ,  T-+O, h-+O, v-+i~ 
Here i is the unit vector parallel to the unperturbed velocity vector at infinity. 

The equations for ~(~) and u(z) take the form 

( i .g radzTO(1) )=Az~O(O ' ZT_+Oo ' O(1)--+0 ( 2 . 1 2 )  

( i .gradzcu( ' ) )=Azcu(1) ,  z c -+oo ,  U(1) ---)- 0 ,  

z T = P % F ,  g o = P e e r .  

T h e s e  e q u a t i o n s  c o i n c i d e  a p a r t  f r o m  t h e  s y m b o l s  w i t h  t h e  a n a l o g o u s  e q u a t i o n s  f o r  t h e  
linear case [2]. Therefore, the solutions to (2.12) that satisfy the condition for linkup 
with the zero terms in (2.6)-(2.10) can be put as 

[ i  1 (i'r) =c~ (2.13) 0 (I) : Nu (~, 0) z71 exp -~- Z T (T~ - -  l )  , "l] : r 

U (1) : 8|1((% 0 ) z ~ l e x p  [ + z c  (11 - t ) ] .  

The second terms in the expansion of these expressions as series in the small quanti- 
ties z T and z c define the following boundary conditions at infinity for the first terms in 
the internal asymptotic expansion by virtue of the representation of (2.3) and the linkup 
conditions: 

r --+ co, O 1 --> (i/2)Nu(E, 0)(q - -  t ) ,  Ul -~  ( i /2)Sh(o,  0)(q - -  i ) .  ( 2 . 1 4 )  

Following [ii], it can be shown that the following are the equations and boundary con- 
ditions correctly describing the first two terms in the internal expansion of (2.2): 

Pe T div(pvh)0 = AO, �9 = �9 0 q- Pe T �9 1 , ( 2 . 1 5 )  
i" = rs, �9 ---- J()o); r - +  co, �9 -+  (1/2)P% Nu(k, 0)(q - -  i ) ;  

Peediv(pvu)0 = d iv(+(O)grad  u), u = u0 -~ P%ul ,  ( 2 . 1 6 )  
r ---- rs, u = l ;  r -+  co, u -+  ( i /2)PeeSh(+,  0)(q - -  i ) .  

The b o u n d a r y - v a l u e  p r o b l e m s  i n  ( 2 . 1 5 )  and  ( 2 . 1 6 )  h a v e  b e e n  w r i t t e n  w i t h  a c c u r a c y  t o  
o ( R e + ) ,  a s  c a n  b e  s e e n  by  c o m p a r i n g  t h e  e q u a t i o n s  and b o u n d a r y  c o n d i t i o n s  o f  ( 1 . 9 )  and  ( 1 . 1 0 )  
w i t h  t h o s e  o f  ( 2 . 1 5 )  and  ( 2 . 1 6 )  and u s i n g  ( 2 . 2 ) ,  ( 2 . 4 ) ,  ( 2 . 5 ) ,  and ( 2 . 1 4 ) ;  t h e  s u b s c r i p t  z e r o  
on the left side in (2.15) and (2.16) corresponds to quantities into which have been substi- 
tuted the zero terms from the internal expansion for ~o and uo. 
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We now seek the solution to the inhomogeneous equations (2.15) and (2.16) directly for 
and u. 

The solution to the thermal part of (2.15) is sought as the sum 

where the terms satisfy the following equations and boundary conditions: 

( 2 . 1 7 )  

A~ = 0; r = G, q) = J(~); r - +  oo, ~ -+ --( t /2)PeTNU(~,  0); 

A6q~ = PeTdiv(pvh)0; 

r = rs, 60.  = 0; r -+  oo, 5(D -~  (I/2)PeTNu()~ , 0)tl. 

We seek the distribution of the relative concentration in the form 

(2.18) 

( 2 . 1 9 )  

u = ~ + 6u, 

w h e r e  t h e  t e r m s  a r e  s o l u t i o n s  t o  t h e  f o l l o w i n g  b o u n d a r y - v a l u e  p r o b l e m s :  

( 2 . 2 0 )  

of 

div(co(~))grad u) = 0; ( 2 . 2 1 )  

r ---- G, u = 1; r , ~  co, u -~ - - ( I / 2 )P%Sh(~ ,  0); 

div(~(~))grad 5u) = - -d iv{  [~(q)) - -  ~(~-)]grad ~} q- ( 2 . 2 2 )  

q- P%div(pvu)0; r = rs, 5u = 0; r - +  oo, 5 u - +  

-+  ( I /2)P%Sh(~,  0)N. 

i t  f o l l o w s  f r o m  ( 2 . 1 8 ) ,  ( 2 . 1 9 ) ,  ( 2 . 2 1 ) ,  and ( 2 . 2 2 )  t h a t  5~ = 0 ( R e ~ ) ,  5u = 0 ( R e ~ ) .  

A direct check shows that the solution to (2.18) can be represented in terms of the co 
(2.6) and (2.7) as 

---- [d(~) + (l /2)Pe~ Nu(~, 0)]c0 - -  (I/2)PeT Nu(~, 0), 

We s e e k  t h e  s o l u t i o n  t o  ( 2 . 2 1 )  a s  

(2.23) 

S d| u = A ] ( r  ) q- B, I ( ~ )  =: ~--~-~. ( 2 . 2 4 )  

As the @ of (2.18) is harmonic for any values of A and B, the expression of (2.24) is 
the solution to (2.21). The explicit form of the constants A and B is determined by solving 
the following linear algebraic system: 

t P% Sh (~, 0) -- A/ ( - I ) I=Af(J(~))+B,  2 ~7- Per  Nu(~ ,  0) + B ,  ( 2 . 2 5 )  

w h i c h  i s  a c o n s e q u e n c e  o f  t h e  b o u n d a r y  c o n d i t i o n s  a t  t h e  s u r f a c e  and  a t  i n f i n i t y  f o r  $ and  
o f  ( 2 . 1 8 )  and ( 2 . 2 1 ) .  We r e s t r i c t  o u r s e l v e s  t o  t h e  m a i n  t e r m  i n  t h e  e x p a n s i o n  o f  f f o r  Pe T § 
0 [ i t  i s  n o t  n e c e s s a r y  t o  i n c o r p o r a t e  t h e  o t h e r  t e r m s ,  s i n c e  t h e  i n i t i a l  s y s t e m  o f  ( 2 . 1 5 )  and  
( 2 . 1 6 )  h a s  a c c u r a c y  o f  o n l y  o ( R e ~ ) ]  i n  t h e  s e c o n d  e q u a t i o n  o f  ( 2 . 2 5 )  and s o l v e  t h i s  s y s t e m ,  

w h i c h  on t h e  b a s i s  o f  ( 2 . 1 1 )  g i v e s  us  t h e  f o l l o w i n g  e x p r e s s i o n s  f o r  t h e  c o e f f i c i e n t s :  

and 
enables us to interpret ~, u, ~, and ~u. 

In accordance with the formula [8, 9] 

< w > =  t - - - w ~ f w d E =  i ; ~ w(r,N,~)dTd ~ 
4ar z 4--h- 

Er --10 

t PeT) d (~) j-1 (Re~), ( 2 . 2 6 )  A = J - 1  ( - ~ a ) [ t  + --~- ( P e t - -  (-~5) Sh ( t ,  0)] + o  

j - 1  { i Sh (1, 0) o B = - -  -~- (Pc c - -  peT) J (~) \ - ~ 7  

3 .  Term I n t e r p r e t a t i o n .  Mean N u s s e l t  and  She rwood  N u m b e r s .  B e f o r e  we a n a l y z e  ( 2 . 1 9 )  
( 2 . 2 2 ) ,  we c o n s i d e r  t h e  s p e c i a l  c a s e  o f  a s p h e r i c a l  d r o p l e t  o r  p a r t i c l e  ( r  s = 1 ) ,  w h i c h  

(11 = c o s  0) 
(3.1) 
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we introduce the surface-averaging operator, where Z r is the surface of a sphere of radius r. 

For any function w dependent only on the radial coordinate r we have <w(r)> = w(r), and 
the averaging operator of (3.1) commutates with the operator for differentiation with re- 
spect to r. Also, in the present case of a spherical particle, the solution is independent 
of the ~ coordinate i(0/09= 0) , while the zero terms in the internal expansions .of (2.2) are 
dependent only on r by virtue of the symmetry in (2.4) and (2.5); Go : ~o(r) = J(X)r -~, uo = 
uo(r). As the representation of (2.2) applies for G and u, the following formula applies to 
o(Rem) for any analytic function G: 

<G(r u)> = G(<O>, <u>), (3.2) 

which can be proved by direct check. 

We use these features and follow [8, 9] in integrating the equations and boundary condi- 
tions of (2.15) and (2.16) with respect to ~ and n within the same limits as in (3.1) to get 

for the means that 

t d 2 d 
r~ 7 F r r  -s <r = O; (3.3) 

r = I, <r = J(h); r-+ co, <r -* --(I/2)PeTNu(h, 0); 

i ~ (<~>)@r <u> 0; r 2 d r  r2~  = (3.4) 

r= i, <u> = I; r-+ co, <u>-+--(I/2)P%Sh(o, 0). 

In deriving (3.3) and (3.4) we have used the results <n> = 0, <pvr> = 0, of which the 
second is a consequence of (1.5) and the absence of flow through the surface of the particle 

of (1.6). 

The mean Nusselt and Sherwood numbers of (1.12) are defined by the following to o(Re~): 

N u  JT=id<*>1, Sh = -  ( 3 . 5 )  

Comparison of the equations and boundary condit ions of (2.18) and (2,21) wi th  those of 
(3.3) and (3.4) shows that we have as follows for a spherical particle: 

= <~>, 6r = �9 -- <r u = <u>, 6~ : ~ -- <u>, (3.6) 

Formulas (3.6) mean that ~ and u are surface means, while 6~ and 6u are the deviations 

of the initial quantities ~ and u from their mean values. 

This comparison, together with (3.5), shows that the second terms 6G and 6u of (2.17) 
and (2.20) do not make any contribution to the integral heat and material fluxes to the par- 
ticle surface. This in turn means that the expansions of dG and 6u for r § ~ do not contain 
a source term proportional to r -~. This assertion can be proved by integrating (2.19) and 
(2.22) over a reference gas volume V enclosed between the surface S of a particle and the 
surface of a sphere Z R of radius R entirely enclosing the particle. We transfer from the 
volume integral to a surface one (with respect to S and ZR) in accordance with Gauss's for- 
mula and pass to the limit R § ~ to get that the surface integrals of the right parts of 
(2.19) and (2.22) become zero because of the features of the zero terms in r and uo, the no- 
flow condition of (1.6), and the boundary conditions at the surface. It also follows that 
there is no source term in the expansion of 6r and 6u for r § ~ because one of the remaining 
two surface integrals becomes zero, namely that over the surface of the sphere S these inte- 

grals correspond to the left sides of (2.19) and (2.22). 

One can consider ~G and ~u similarly for the general case of a particle of any shape. 
For this we consider a family of surfaces co = const (in the case of a spherical particle, 
this family consists of surfaces of concentric spheres of constant radius_r = const by virtue 
of co = r-~). By virtue of (2.23) and (2.24) we also have ~ = const and u : const at these 
surfaces. The surface corresponds to co : i, while far from the particle the surface co = 
const by virtue of (2.7) tends asymptotically to spherical form for r § =. Equations (2.19) 
and (2.22) forget the shape of the particle far from it (i.e., the structure of the solution 
for r § m will be as for a spherical particle) and, therefore, the asymptotic expansions of 
~ and 6u should not contain source terms proportional to r -~ for r § =. On this basis, we 
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integrate (2.19) and (2.22) over the control volume V and transfer to surface integrals with 
respect to S and IR. We apply an argument analogous to that above to conclude that 5~ and 
8u do not contribute to the mean Nusselt and Sherwood numbers, as in the case of a spherical 
particle. Th~s means that 8~ and 8u can be treated as fluctuations in ~ and u about the mean 
values ~ and u at the surfaces co = const. 

We use (2.23), 
o(Re~) that 

(2.24), and (2.26) for the mean Nusselt and Sherwood numbers to get to 

Nu (k, PeT) = Y ()0 Sh (l, 0) [1 + + PeT Sh (1, 0)], 

[ Sh ((o, Pe) = Sh (o), 0) t + y Pe r Sh (1, 0) + --ff-(P%-- PeT) 

MSh (oL 0 ) ] =  Nu(~, PeT)Y-1 ( ~ ) [ 1  + + ( P o e - -  PeT)Sh(o,  0)], 

Sh (~, 0) ] (~) J-~ ~ s!~ (l, o) 
Then (2 .1 )  e n a b l e s  us to  w r i t e  (3 .7 )  as  

Nu (t, Ne=) ~ J ()~) Sh (1, 0) I + =2- Pte~ Pr.~ Sh (1, 0) + o (Be~), 

(3.7) 

(3.8) 

( { [ (')]' S l l ( o ) , E e ~ ) = Y ( k ) J - 1  )~ \ 1 . -2- ~ ) S h ( l ,  0) . I R e ~ S h ( l , 0 )  P r ~ + ( S c ~ - - P r ~ ) J ( ~ ) J  -1 ~ -  ~+o(Re~) .  

From ( 3 . 8 )  we s ee  t h a t  when the  Lewis--Semenov number Le = P r~ /Sc ~  = 1 (wi th  t h i s  a c c u -  
r a c y ) ,  t h e r e  i s  an a n a l o g y  be tween  the  h e a t  and mass t r a n s f e r  a t  t he  p a r t i c l e .  

No te .  The f i r s t  f o rmu la  in  (3 .7 )  can be  d e r i v e d  d i r e c t l y  f rom (2 .15)  as in  [11 ] .  For 
t h i s  p u r p o s e  we m u l t i p l y  b o t h  p a r t s  o f  (2 .15 )  by ~o and i n t e g r a t e  ove r  the  c o n t r o l  volume of  
the gas V on the basis of 

(DoA(D ~_ div ((Do grad (D) -- div ((D grad (Do) + (DA(Do, 
(Do(cvpv.grad T)o = (Do div (pvh)o ~ div (gv ~) --  ~ div (pv), 

TO((O O) 

o 

whose latter terms become zero because the function Go of (2.4) is harmonic and by virtue of 
the equation of continuity (1.5); here the function To(~o) is obtained by inverting the ex- 
pression ~o = ~(I, To) of (1.8). We use Gauss's formula to convert to surface integrals to 
get finally that 

6 ~ s 0ff)o 
~ [ j = O ,  I1 ~ - ' j  (D O c)00n dS,  [o=J(D~dS,. . (3.9) 
j = l  S S 

O(D 
4 

= - -  ( D @ d E R ,  I ~ = - - P e  T [ p~(cOo)(v-n)dE.. 
E R ER 

To calculate the first three integrals in (3.9) we use the boundary conditions of (2.4.) 
and (2.15), the definition of the mean Nusselt number of (1.12), and the condition (1.6) for 
the absence of gas flow through the surface. To calculate the latter three integrals, we use 
the representations of (2.7) and (2.8) for ~o, the boundary condition at infinity of (2.15) 
for ~, and the formulas dE R = O(R2), ~(~o) -~ ~2o/2 = O(R-=), v=vwhichapplyfor largeR. On 
this basis we allow the radius R of the sphere to tend to infinity to get the following ex- 
pressions for the integrals: 

11 = 4nJ(~) Nu ()~, PET), l~ = --4~XJ(~) Nu (~, 0), ( 3 .10 )  

I a = I~ = 16 = 0, 15 = - -2~J(~)Nu (~, 0)Sh (l, 0). 
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We now use (2.11), (3.9), and (3.10) to get the first formula of (3.7). 

4. Power-Law Dependence of Viscosity on Temperature. Particles of Various Shapes. For 
a particle of a given shape, one can determine the rate of the convective heat and mass trans- 
fer in accordance with (3.7) and (3.8) by calculating the integrals J(%), J(%/Po) of (i.ii) 
and determining the mean Sherwood number Sh(l, 0) corresponding to the solution to the linear 
auxiliary problem for the Laplace equation of (2.6). 

We first derive the expressions for the integrals J for certain typical cases. 

We consider a power-law dependence of the viscosity on temperature: 

~(T , )  = ~oT~, ~ o =  const. (4 .1 )  

Then, as  in  [ 1 0 ] ,  i t  i s  assumed t h a t  t h e  gas  has  a c o n s t a n t  s p e c i f i c  h e a t  and t h a t  Pr 
and Sc a r e  c o n s t a n t .  Then ( 4 . 1 ) ,  t o g e t h e r  w i t h  t h e s e  a s s u m p t i o n s ,  c o r r e s p o n d s  to  the  f o l l o w -  
ing  functions that define the problem of (1.1)-(1.4): 

%(T) = ~( r )  = po = [l q- ( T s / T ~  - -  l )T]  ~. 

As the mean Nusselt and Sherwood numbers are given by (3.7) or (3.8) for a power-law 
temperature dependence for the viscosity, we have 

1 [i--(T~/T~) ~ + 1 ] i ~  J' ( ~ )  J (%) = ~7-~-:I [ J =I. (4.2) 

Formulas (3.8) and (4.2) were derived in [i0] apart from the difference in symbols and 
normalization for the case of a spherical particle Sh(l, O) = i. 

We now examine the effects of compressibility on the convective heat and mass transfer. 
We assume that the thermal conductivity and diffusion coefficient are constant and indepen- 
dent of temperature: 

% = o = J~ (4.3) 

Also, the pressure in the flow differs only slightly from the unperturbed pressure at infin- 
ity if the gas velocity is low (differences of the order of the square of the Mach number). 
This means that the equation of state p, = o,RT, (where p, is pressure and R is the gas con- 
stant) can be modified by replacing p, by p~ = p~RT~, which gives us the following expression 
after conversion to a dimensionless variable for the density: 

p = p(T) = [I § (rJToo -- t)Tl-*. (4.4) 

It follows from (4.3) and (4.4) that the mean Nusselt and Sherwood numbers are defined 
by (3.7), where 

1 1 +  J(X)=5, J =-5- ~ " 

We f o r m u l a t e  t he  r a t i o  o f  t h i s  mean Sherwood number t o  t he  a u x i l i a r y  Sherwood number 
c o r r e s p o n d i n g  to  the  c a s e  o f  an i n c o m p r e s s i b l e  f l u i d :  

Sh (~, O) Io=o(r) = 2T~ 
Sh (~, 0) I0= x r~ q T~ " 

This formula shows that the compressibility reduces the rate of mass transfer at a hot 
particle for Ts > T~ (by comparison with the analogous process in an incompressible fluid) 
and increases the mass transfer for a cold one for Ts < T~. 

We now give some detailed values for Sh(l, O) for aspheric particles [Sh(l, O) = 1 for 
a sphere]. 

The following formula applies for a thin circular disk [2]: 

Sh (l, 0) = 2 / n  .~. 0.637. 

Consider a particle as an ellipsoid of rotation with semiaxes a and b, where a is the 
equatorial radius and b is the polar radius, which lies along the axis of rotation. We take 
the equatorial radius a as the characteristic length scale and get Sh(l, O) as [12] 
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0)=[(% 2+t)-3/2[arcctg%] -1, a~b,  Sh(i, 
~ "(;C-- ~)-~/~[arethz] -1, a~b, 

(af -,/2, ~ ln (X+l  t Z=  -7- --I a r c t h z = 7  ~,k--tJ" 

We now consider a solid dumbbell particle consisting of two contacting spheres of radii 
a~ and a2. Then Sh(l, 0) is given by [13] 

Sh(t, O) = %_~% ~ + ~1~ + 2u , (4.5) 

q~ (x) =-~7 In F (x) (x)------ ~ =--? 21n2, ~(I) =-- 
\ ~--o0 

Here the radius a: of the first sphere has been taken as the characteristic length scale, 
while ~ = ~(x) is the logarithmic derivative of a gamma function, F = F(x) is the gamma func- 
tion, and y = 0.577215... is Euler's constant. 

In the particular case of a particle consisting of two contacting spheres of equal radius 
al = a2 = a, from (4.5~ we get 

Sh(i, 0) = 21n 2~I~386. 

Note. A difference from the case of an incompressible fluid [ii] is that in (3.7) and 
(3.8) we cannot add terms proportional to Pe 2 in Pe since, in the case of a viscous compres- 
sible thermally conducting gas we do not know the corresponding asymptotic expansion for the 
velocity field far from the particle (naturally, apart from the main term i). Therefore, in 
order to derive the subsequent terms in the asymptotic expansion with respect to the small 
Reynolds number one has to examine the complete problem, which involves incorporating the 
equations of motion as well as (i.i), (1.2), and (1.5). 
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